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Abstract. We propose a unifying FCA-based framework for some ques-
tions in data analysis and data mining, combining ideas from Rough Set
Theory, JSM-reasoning, and feature selection in machine learning. Unlike
the standard rough set model the indiscernibility relation in our paper is
based on a quasi-order, not necessarily an equivalence relation. Feature
selection, though algorithmically difficult in general, appears to be eas-
ier in many cases of scaled many-valued contexts, because the difficulties
can at least partially be projected to the scale contexts. We propose a
heuristic algorithm for this.

1 Introduction

A paper recycling company gets vast amounts of material delivered for recycling
every day. The first step in their process is to separate the waste from the
recyclable part. This is done automatically: A machine performs certain optical
measurements on every single piece and then decides which fraction it goes to.
We are interested in the rules by which these decisions are made.

The situation is typical for applications of Machine Learning [14], and most
likely the decision rules were obtained from a training data set, using a method of
supervised learning. Machine Learning offers powerful algorithms, in particular
when the data is numerical in nature. Here we concentrate on the more general
case of qualitative data, and formalise the learning scenario as follows: We are
given a formal context (G, M, I) [8], describing the “observations” or “measure-
ments”, together with a set G+ ⊆ G, comprising the objects of interest, also
called the positive examples. Objects from the complement G− = G \ G+ are
called negative examples. The task then is to give a characterisation of G+ in
terms of (G, M, I) (a similar problem may be stated for G−). The nicest case, of
course, is that membership in G+ is equivalent to some attribute combination,
i.e., that G+ is a concept extent of (G, M, I). But even if that is not the case,
often a classification is desired. The second best choice then is to find attribute
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combinations (“classifiers”) that are sufficient for membership in G+. And ide-
ally there should be enough such classifiers to cover all elements of G+. This
motivates our first definition:

Definition 1. Let (G, M, I) be a formal context. A set

G+ ⊆ G

is called grounded or, equivalently, definable, iff

G+ =
⋃

{P ′ | P ⊆ M, P ′ ⊆ G+}.

The word “grounded” is used in JSM-theory of inductive reasoning [2,3,4], and it
is defined there in a slightly different manner: The sets P in the above definition
are required to be (positive) hypotheses for G+, that is, concept intents P
with P ′ ⊆ G+ (see FCA formalization [5] of [4]). But it is easy to see that this
causes no additional difficulty, simply replacing each P by its closure P ′′.

The word “definable” comes from Rough Set Theory [15,16,18,19], where it
is defined in terms of an indiscernibility relation, usually an equivalence re-
lation. Our approach generalises this. The role of the indiscernibility will be
taken by the object quasi-order of the formal context and will not necessarily be
symmetric. This is unfolded in Theorem 1 below. The relation between FCA,
JSM-reasoning and Rough Set Theory was first studied in [17], but for specific
hypotheses from [10].

2 Definability and the Object Quasi-order

The object quasi-order of a formal context (G, M, I) is defined by

g ≤ h : ⇐⇒ g′ ⊇ h′ (g, h ∈ G).

It is indeed reflexive and transitive, but not necessarily anti-symmetric. This
makes it a quasi-order (called a preorder by some authors). The notion of an
order ideal is the same as for ordered sets: a subset S ⊆ G such that h ∈ S
and g ≤ h always implies g ∈ S. The quasi-order ideals are precisely the extents
of the formal context (G, G, �≥), as in the case of an ordered set.

Theorem 1. The definable object sets of (G, M, I) are precisely the quasi-order
ideals of the object quasi-order. Each subset G+ ⊆ G contains a largest definable
set R(G+), and has a smallest definable set containing it, denoted R(G+).

Proof. Let G+ ⊆ G be some subset and let g ∈ G. There exists some P ⊆ M
with

g ∈ P ′ ⊆ G+

iff g′′ ⊆ G+. But since

g′′ = {h | h′ ⊇ g′} = {h | h ≤ g},

this is equivalent to G+ being a quasi-order ideal. Since the family of quasi-order
ideals is closed under set union and intersection, the rest of the proposition is
immediate.
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Several algorithmic questions about the object quasi-order will arise in the se-
quel. We mention here three of them:

Feature Sets: Given a definable set G+ ⊆ G, which subsets F ⊆ M suffice to
make G+ definable? In other words, what are the subsets F ⊆ M for which
G+ =

⋃
{P ′ | P ⊆ F, P ′ ⊆ G+}?

Global Reducts: Which subsets of the attribute set of a formal context (G, M, I)
induce the same definability? In other words, what are the subsets F ⊆ M for
which it is true that

g ≤ h ⇐⇒ g′ ∩ F ⊇ h′ ∩ F for all g, h ∈ G?

Separability: Given subsets L, U ⊆ G such that u ≤ l holds for no u ∈ U and
no l ∈ L. Which sets also separate L from U , i.e., for which E ⊆ M is it true
that

u′ ∩ E ⊇ l′ ∩ E

holds for no u ∈ U and no l ∈ L?

In what follows we will show that these problems are algorithmically difficult
if we require the respective subsets of attributes to be minimal.

The lower and upper approximation operators, as the operators R(·)
and R(·) occurring in the theorem are called in Rough Set Theory, are given as
follows:

R(G+) =
⋃

{P ′ | P ⊆ M, P ′ ⊆ G+}

R(G+) =
⋃

{g′′ | g ∈ G+}.

The operators can also be given in terms of the JSM-method. In [6,7] we have
introduced the notion of a hopeless example, by which we meant a positive
example g ∈ G+ which cannot be classified because there is some object h /∈ G+
having all attributes of g. That is g ∈ G+ is hopeless iff there is some h /∈ G+
such that h ≤ g. In that language then

R(G+) = {g ∈ G+ | g is not hopeless}
R(G+) = R(G+) ∪ {h | h ≤ g for some hopeless g ∈ G+}.

The next proposition is now immediate.

Proposition 1. The following conditions are equivalent:

1. G+ is definable,
2. R(G+) = G+,
3. R(G+) = G+.

Example. We illustrate our definitions by means of an artificial example. Con-
sider the following context (G, M, I) where positive examples are fruits. This
information is given by the target attribute “fruit”, which does not belong to the
set of attributes M .
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color firm smooth form fruit
apple yellow no yes round +
grapefruit yellow no no round +
kiwi green no no oval +
plum blue no yes oval +
toy cube green yes yes cubic −
egg white yes yes oval −
tennis ball white no no round −

Consider a natural scaling of the context
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fruit
apple × × × × +
grapefruit × × × × +
kiwi × × × × +
plum × × × × +
toy cube × × × × -
egg × × × × -
tennis ball × × × × -

– A minimal feature set for G+ is the set {yellow, nonfirm, nonround}.
– A minimal feature set for G− is {white, firm}.
– A minimal global reduct is, e.g., the set

{white, yellow, green, smooth, nonsmooth, round, nonround}.
– The set {white, firm} is a minimal set separating G− from G+.
– The set of positive examples is definable, since

R(G+) = R(G+) = G+ = {apple, grapefruit, kiwi, plum}.
– Consider another positive example orange, which is orange, nonfirm, non-

smooth and round. Under the scaling chosen,
orange ′ = {nonfirm, nonsmooth, round}.

Thus this example is hopeless for the scaling, since orange ′ ⊆ tennis ball ′.
– For the extended data set we have

R(G+) = {apple, grapefruit, kiwi, plum, tennis ball, orange}.
R(G+) = {apple, grapefruit, kiwi, plum} and

Thus including orange in the set G+ of positive examples makes G+ unde-
finable (for the given scaling).

3 Feature Sets

Not all attributes in the attribute set M may be necessary for the classification,
often a subset may suffice. Such subsets are called feature sets. In Rough Set
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Theory, minimal feature sets are called reducts. The process of thinning out the
attributes to obtain a feature set is called feature selection [13]. In relation to
FCA-based hypotheses this was studied in [6,1]. To relate these issues to the
Rough Set Theory, we introduce for arbitrary subsets N ⊆ M the relative
approximation operators:

RN (G+) =
⋃

{P ′ | P ⊆ N, P ′ ⊆ G+}

RN (G+) =
⋃

{(g′ ∩ N)′ | g ∈ G+}.

So the relative approximation operators are simply the approximations operators
for the shortened formal context (G, N, I ∩ G × N). They therefore share the
properties of approximation operators. We say that G+ is definable in terms of
N , shortly N-definable or N-grounded iff

RN (G+) = G+ = RN (G+),

where again each of the two equalities implies the other.
If G+ has only one element, we omit the set brackets and write RN (g) instead

of RN ({g}).

Proposition 2. RA(g) ∩ RB(g) = RA∪B(g).

Proof. RA(g)∩RB(g) = (g′∩A)′∩(g′∩B)′ = ((g′∩A)∪(g′∩B))′ = (g′∩(A∪B))′.

There are two different ways to formally define the notion of a feature set. In
the global view, we look for sets inducing the same definable sets as M does. We
call F ⊆ M a global feature set if for all subsets S ⊆ G it holds that

RF (S) = R(S) and RF (S) = R(S),

which is equivalent to the condition that

S is F -definable iff S is definable.

Finding global feature sets is equivalent to the global reduct problem mentioned
above. Its complexity will be treated in the next section.

Our focus here is more on finding feature sets for a given target set G+ of
positive examples. So we are interested in finding, for a fixed given definable set
G+ ⊆ G sets F ⊆ M such that

RF (G+) = G+ = RF (G+).

Such a set will be called a feature set for G+. Note that we do not restrict
ourselves to minimal such sets. But finding small ones is indeed intractable, as
it is for reducts in the case of Rough Sets:

Proposition 3. The problem of finding small feature sets, given by

Instance: A formal context (G, M, I), a definable set G+ ⊆ G, and a
natural number k.
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Question: Is there a feature set for G+ of size ≤ k, i.e., a subset
F ⊆ M such that RF (G+) = G+ and |F | ≤ k?

is NP–complete.

Proof. The problem is in NP , because for testing if a given F ⊆ M is a feature
set we only need to check if

⋃
{(g′ ∩ F )′ | g ∈ G+} = G+. This can clearly be

done in polynomial time.
To show that the problem is NP-hard, we reduce it to a problem well known

to be NP-complete: Finding transversals of a family of sets:

Instance: A set M , a family St, t ∈ T of nonempty proper subsets of
M (here T is some index set), and an integer k.

Question: Is there a subset F ⊆ M , |F | ≤ k, such that F ∩St �= ∅ for
all t ∈ T ?

Given an instance of the transversal problem, we can construct a formal context
(G, M, I) by letting G := T ∪ {g0}, t′ := St for t �= g0 and g′0 := ∅. Moreover,
we set G+ := T . It is easy to check that F ⊆ M is a feature set for G+ iff it is
a transversal for {St | t ∈ T }.

Our approach to finding feature sets for G+ is an indirect one. Rather than
building such sets bottom-up, we assume that we are already given one, say F ,
where F = M is a possible choice. Then we try thinning F , using the following
strategy: We consider some subset of F which is not a feature set for G+ and
investigate which elements of F must be added to extend that subset to a feature
set for G+. There will be no unique answer to this question. Our goal is to
describe all possible solutions.

More formally, let F be a feature set for G+, so that

RF (G+) = G+ = RF (G+).

Fix some subset N ⊆ F which is not a feature set, so that

RN (G+) � G+ � RN (G+).

Then both the lower boundary

L := G+ \ RN (G+)

and the upper boundary

U := RN (G+) \ G+

are nonempty sets. The lower boundary consists of those elements g ∈ G+ which
are not in the extent of any hypothesis H ⊆ N with H ′ ⊆ G+.

Theorem 2. Let N, E ⊆ M and let L, U denote the lower and upper boundary
with respect to N . Then N ∪ E is a feature set for G+ iff for all g ∈ L it holds
that

RN (g) ∩ RE(g) ⊆ G+.

A sufficient condition is
RE(L) ∩ U = ∅.
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Proof. N ∪ E is a feature set for G+ iff each object g ∈ G+ is implied by some
P ⊆ N ∪ E with P ′ ⊆ G+. For objects in RN (G+) this is clear anyway, so it
suffices to consider objects from the lower boundary L = G+ \ RN (G+). For
every such object g ∈ L we must have that

RN∪E(g) ⊆ G+.

By Proposition 2, this is equivalent to

RN (g) ∩ RE(g) ⊆ G+ for all g ∈ L.

Since RN (g) ⊆ RN (G+) holds anyway, it suffices that

RE(g) ∩ U = ∅

holds for all g ∈ L. But because of RE(L) =
⋃

g∈L RE(g) this can be summarised
to

RE(L) ∩ U = ∅.

4 Global Reducts and Separators

Finding minimal global reducts may be hard, which is expressed by the following

Proposition 4. The following problem is NP-complete1:

Instance: A formal context (G, M, I) and a natural number k.
Question: Is there a subset F ⊆ M , |F | ≤ k, such that

g ≤ h ⇐⇒ g′ ∩ F ⊇ h′ ∩ F for all g, h ∈ G?

Proof. We reduce “3-dimensional matching”, a well-known NP-complete prob-
lem [9], to our problem. It requires to decide, for given disjoint sets X , Y , and
Z of equal cardinality k and a set T ⊆ X × Y × Z, if T contains a matching,
that is, a subset T ′ ⊆ T such that |T ′| = k and no two elements of T ′ agree in
any coordinate. Such a matching can of course only exist if the coordinates of T
cover the sets X , Y , and Z, respectively, so this can be assumed as additional
precondition.

Given such an instance T for some k > 1, we can construct a formal context
having a global reduct of size ≤ k if and only if the instance contains a matching.
The construction is as follows. Let

G0 := {(w, 0) | w ∈ X ∪ Y ∪ Z}, and
G1 := {(w, 1) | w ∈ X ∪ Y ∪ Z}.

We investigate the formal context (G, T ∪̇ {mX , mY , mZ}, I) with G := G0∪G1,
where the incidence is defined as follows:
1 See the acknowledgements in Section 7 below.



224 B. Ganter and S.O. Kuznetsov

m′
X := X × {0, 1}, m′

Y := Y × {0, 1}, m′
Z := Z × {0, 1},

and, for each t =: (x, y, z) ∈ T ,
t′ := G0 \ {(x, 0), (y, 0), (z, 0)} ∪ {(x, 1), (y, 1), (z, 1)}.

When is g ≤ h in this formal context? Recall that objects are pairs (w, i), where
w ∈ X ∪ Y ∪ Z and i ∈ {0, 1}. An analysis of the possible cases shows that
(w1, i1) ≤ (w2, i2) holds if and only if w1 and w2 are from the same set (that
is, {w1, w2} is a subset of either X or Y or Z), w1 �= w2, i1 = 0 and i2 = 1.
Actually, this order is obtained exactly from those subsets of T containing triples
such that each element of X ∪Y ∪Z occurs at least once as a component. Such a
subset has cardinality ≤ k if and only if it is a matching. Therefore the existence
of a 3-dimensional matching is reduced to the problem of finding a global reduct
with ≤ k attributes.

A similar result holds for the problem of finding a minimal separator, i.e., a
minimal set of attributes separating a set of objects from another one, as stated
by the following

Proposition 5. The following minimal separator problem is NP-complete:

Instance: A formal context (G, M, I), two sets of objects L, U ⊆ G
such that u ≤ l holds for no l ∈ L, u ∈ U , and a natural number k.

Question: Is there a subset F ⊆ M , |F | ≤ k such that

u′ ∩ F ⊇ l′ ∩ F holds for no u ∈ U, l ∈ L?

Proof. We reduce the minimal transversal problem

Instance: A set M , a family St, t ∈ T of nonempty proper subsets of
M (here T is some index set), and an integer k.

Question: Is there a subset F ⊆ M , |F | ≤ k, such that F ∩St �= ∅ for
all t ∈ T ?

Given an instance of the transversal problem, we can construct a formal context
(G, M, I) by letting G := T ∪ {g0}, t′ := M \ St for t �= g0 and g′0 := M . Let
L = {g0}, U = T . It is easy to check that F ⊆ M separates L = {g0} from
U = T iff F is a transversal for {St | t ∈ T }. The reduction is completed, its
polynomiality, as well as the membership of the minimal separator problem in
NP are obvious.

5 Scale Coarsening

Theorem 2 was tailored for applications to scaled many-valued contexts. For
understanding this article it is not required to recall the precise definitions
(which can be found in [8]). It suffices to understand that these are formal
contexts (G, M, I) for which the attribute set M can be subdivided into subsets
Ms, s ∈ S, such that each such Ms comes from a standardised formal context
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Ss := (Gs, Ms, Is), a “scale”. Some scales are used frequently because of their
interpretation and their particularly simple structure, like “nominal”, “ordinal”
or “interordinal” scales. For these, the algorithmic problems mentioned above are
easy to solve.

The heuristic procedure that we suggest for feature selection in scaled many
valued contexts builds on this. Feature selection will result in coarser scales,
because some scale attributes will not be used. We propose the following strategy:

– Start with some feature set F , for example F := M .
– Then pick a scale, one after another, and

1. remove the set Ms of scale attributes from the feature set.
2. The result N := F \ Ms may fail to be a feature set. In that case, use

Theorem 2 to find an appropriate set E ⊆ F \ N such that N ∪ E is a
feature set.

3. Replace F by N ∪ E, and continue.

Note that choosing E can be done in two ways, according to Theorem 2.
Either we use the equivalence stated in the first part of the theorem, which gives
the precise results. Or we use the sufficient condition given in the second part.
Note that this amounts to solving the separation problem stated above, but only
of the formal context (G, E, I ∩ (G × E)).

This is, as already said, a heuristic procedure. Its result depends on the se-
quence in which the scales are handled, and even if the set E is chosen minimal
in each step, we do not claim that the result is a minimal reduct. This heuris-
tic can be useful for data with very large sets of attributes like those described
in [12], where standard context reduction [8] is difficult because it is hard even
to keep the context in the memory.

However, we expect that the method leads to reasonably small feature sets in a
reasonable computing time, since the application of Theorem 2 avoids exhaustive
search in testing whether a subset of attributes is good (but not in finding the
minimal reduct itself) by projecting the problem to standardised scales.

But more importantly, the method is flexible enough to include other criteria
into the search for good feature sets. Small size is not always the most desirable
property, and other aspects may be more important. The next section gives an
example of this.

6 To Avoid Overfitting

Recall the example that was mentioned in the introduction, where paper samples
were to be classified based on the spectra of the light spectra they emit. We are
actually working on such a data set (it is too large to be discussed here in detail).
There the spectra are given with such a precision that virtually every subset of
the training data set is grounded, simply because no two of the spectra coincide
precisely in every decimal digit. Thus the condition of definability,

G+ =
⋃

{P ′ | P ⊆ M, P ′ ⊆ G+},
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is satisfied because for each g ∈ G+ we get as a classifying attribute set P := g′,
with P ′ = {g}.

However, such a classification will probably be useless when the classification
rules learnt from the training set are to be applied to other data. Then, since
the positive examples in the training set have been described so precisely, their
descriptions will most likely not fit new examples outside the training set. This
effect is called overfitting. There are many suggestions how this can be avoided.

In the original version of the JSM-method, for example, it is required that only
rules are used for classification that apply to at least two positive examples. A
set G+ ⊆ G is called sufficiently grounded if for each g in G+ there exists
some h ∈ G+ such that

{g, h}′′ ⊆ G+.

This is the case if and only if

G+ =
⋃

{P ′ | P ⊆ M, P = P ′′, P ′ ⊆ G+, |P ′| ≥ 2}.

Note that the requirement P = P ′′ can be omitted here.
If the set of positive training examples is sufficiently grounded, it is possible to

allowing only attribute sets P ⊆ M as classifiers whose support |P ′| is at least
2. It is reasonable that this restriction lowers the effect of overfitting, because
an attribute combination that applies to at least two different objects is more
likely to apply to other objects as well. This approach can, of course, be varied
by replacing 2 by other thresholds and so on. We are not going into such details
here. Instead, we shall study the following problem: Call F ⊆ M a strong
feature set for G+ if

G+ =
⋃

{P ′ | P ⊆ F, P ′ ⊆ G+, |P ′| ≥ 2}.

Clearly G+ is sufficiently grounded if and only if there is a strong feature
set for G+. However, even if G+ is sufficiently grounded, not every feature set
for G+ must be strong. The question to investigate therefore is: How can the
feature selection procedure described in Section 5 be modified to obtain strong
feature sets? Unfortunately, the necessary modification of Theorem 2 is not very
elegant:

Proposition 6. Suppose that F ⊆ M is a strong feature set for G+ and that
N, E ⊆ F . Then N ∪ E is a strong feature set for G+ iff for each g ∈ G+ there
is some h such that

({g, h}′ ∩ N)′ ∩ ({g, h}′ ∩ E)′ ⊆ G+.

This is rather obvious. Not so obvious, but not a hopeless task, is how this can
be made efficient in an algorithm. We pose this as a problem.

7 Conclusion

We considered a framework for selecting important subsets of attributes (or
attribute values) in FCA-based knowledge discovery. This framework uses the
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ideas of reducts, upper and lower approximations of the Rough Set Theory, at the
same time generalizing the latter by allowing for a quasi-order (not necessarily
equivalence) indiscernibility relation. We showed that choosing smallest repre-
sentations (global reducts, feature sets) is intractable (NP-complete) in general
settings, and propose a heuristic based on coarsening the set of attribute values.
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